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ABSTRACT 

Snappy is a compression/decompression library. It does not 

aim for maximum compression, or compatablity with any 

other compression library instead it aims for very high speeds 

and reasonable compression. For instance, compared to fastest 

mode of zlib, Snappy is an order of magnitude faster for most 

inputs, but the resulting compressed files are anywhere from 

20% to 100% bigger. On a single core of a Corei7 processor 

in 64bit mode,Snappy compress at about 250 MB/secor more 

and decompress at about 500 MB/sec or more. 

Snappy is widely used inside Google, in everything from  

BigTable and MapReduce to our internal RPC systems. 

 

1. INTRODUCTION 
Snappy is a compression/decompression library. It does 

not aim for maximum compression, or compatablity 

with any other compression library instead it aims for 

very high speeds and reasonable compression. For 

instance, compared to fastest mode of zlib, Snappy is an 

order of magnitude faster for most inputs, but the 

resulting compressed files are anywhere from 20% to 

100% bigger. On a single core of a Corei7 processor in 

64bit mode,Snappy compress at about 250 MB/secor 

more and decompress at about 500 MB/sec or more. 

For the computer industry, effective and prompt 

analysis of gathered data means better 

understanding of consumer needs and more 

business. As the requirement of high storage 

capacity and data intensive computing grows, the 

scale of storage clusters increases. The key aspect of 

making such storage clusters cost effective and 

efficient is utilizing an appropriate software 

framework and platform for large scale computing.   

2. Introduction to Hadoop 
Hadoop was chosen for this thes is for several 

reasons. First, it is popular and widely used by a 

number of leading organizations including, 

Amazon, Facebook, Google, Yahoo! and many 

others. Second, it is designed for commodity 

hardware, significantly lowering the cost of building 

the cluster. Third, Hadoop is an open source 

technology developed in Java, making it easier to 

obtain, distribute and modify whenever necessary. 

Its effective use, lower cost and easy access makes 

it a potentially stable base as a large scale storage 

system for future technologies. Thus, research into 

the architecture of Hadoop file system should help 

data intensive applications with their rapidly 

growing storage needs.  

 

3. Introduction to HDFS 
Implementation of Hadoop is carried out in two main 

service components of the master / slave architecture. 

The file system metadata is decoupled from its actual 

data located on an individual NameNode machine. 

Decoupling provides flexibility to the architecture to 

accommodate more DataNodes in the cluster. Hadoop 

was chosen for this thesis for several reasons. First, it is 

popular and widely used by a number of leading 

organizations including, Amazon, Facebook, Google, 

Yahoo! and many others. Second, it isdesigned for 

commodity hardware, significantly lowering the cost 

of building the cluster. Third, Hadoop is an open source 

technology developed in Java, making it easier to 

obtain, distribute and modify whenever necessary. Its 

effective use, lower cost and easy access makes it a 

potentially stable base as a large scale storage system 

for future technologies. Thus, research into the 

architecture of Hadoop file system should help data 

intensive applications with their rapidly growing 

storage needs. 

3.1 Data Node 
Hadoop Distributed File System (HDFS) serves as the 

large scale data storage system.  

Similar to other common file systems, the HDFS 

supports hierarchical file organization. The Name 

Node splits large files into fixed sized data blocks 

which are scattered across the cluster. Typically the 

data block size for the HDFS is configured as 

128MB. Since HDFS is built on commodity 
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hardware, the machine failure rate is high. In order 

to make the system fault tolerant, data blocks are 

replicated across multiple Data Nodes. HDFS 

provides replication, fault detection and automatic 

data block recovery to maintain seamless storage 

access. By default replication takes place on three 

nodes across the cluster. When a client tries to 

access the failed Data Node, the Name Node maps 

the block replica and returns it to the client. For 

achieving the high throughput, the file system nodes 

are connected by high bandwidth network.  

. 

3.2 Name Node 
The NameNode maintains the file system metadata 

as the HDFS directory tree and operates as a 

centralized service in the cluster. It controls the 

mapping between file name, data block locations 

and the DataNodes on which data blocks are stored. 

It also writes the transaction logs to record 

modifications in the file system. Clients 

communicate with the NameNode for common file 

system operations such as open, close, rename and 

delete. The namespace is a live record of the HDFS 

located on the centralized NameNode server. It is a 

directory treestructure of the file system which 

documents various aspects of the HDFS such as 

block locations, replication factor, load balancing, 

client access rights and file information. The 

namespace serves as a mapping for data location 

and helps HDFS clients to perform file system 

operations.  

The metadata is stored as a file system image 

(fsimage) file which is a persistent checkpoint of the 

file system. The edit log records the write operations 

submitted by the file system clients. When the edit 

log size exceeds a predefined threshold, the 

NameNode moves the transactions into live memory 

and apply each operation to the fsimage.  

A backup of the namespace is periodically stored on 

the local disk of the NameNode and synchronized 

with a secondary master node as a provision against 

NameNode failure. 

 

3.3 Job Tracker 
The Job Tracker is the service within Hadoop that farms 

out Map Reducetasks to specific nodes in the cluster, 

ideally the nodes that have the data, or at least are in the 

same rack.  

1. Client applications submit jobs to 

the Job tracker.  

2. The Job Tracker talks to the 

Name Nodeto determine the 

location of the data. The Job 

Tracker submits the work to the 

chosen TaskTracke rnodes.  

3. The TaskTracke rnodes are monitored. If they 

do not submit heartbeat signals often enough, 

they are deemed to have failed and the work 

is scheduled on a different Task Tracker. 

4. A Task Trackerwill notify the Job Tracker 

when a task fails. The Job Tracker decides 

what to do then: it may resubmit the job 

elsewhere, it may mark that specific record as 

something to avoid, and it may even blacklist 

the Task Trackeras unreliable.  

5. When the work is completed, the Job Tracker 

updates its status.  

Client applications can poll the Job Tracker for 

information.  

The Job Tracker is a point of failure for the Hadoop 

Map Reduceservice. If it goes down, all running jobs 

are halted. 

3.4 Task Tracker 

A TaskTracker is a node in the cluster that accepts tasks 

- Map, Reduce and Shuffle operations - from 

aJobTracker. 

Every Task Tracker is configured with a set of slots; 

these indicate the number of tasks that it can accept. 

When the JobT rackertries to find somewhere to 

schedule a task within the Map Reduceoperations, it 
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first looks for an empty slot on the same server that 

hosts the Data Nodecontaining the data, and if not, it 

looks for an empty slot on a machine in the same 

rack. The TaskTracker spawns a separate JVM 

processes to do the actual work; this is to ensure that 

process failure does not take down the task tracker. 

The TaskTracker monitors these spawned processes, 

capturing the output and exit codes. When the 

process finishes, successfully or not, the tracker 

notifies theJobTracker. TheTaskTrackersalso send 

out heartbeat messages to the JobTracker, usually 

every few minutes, to reassure the Job Trackerthat it 

is still alive. These messages also inform the Job 

Tracker. The JobTracker will first determine the 

number of splits (each split is configurable, 

~1664MB) from the input path, and select some 

TaskTracker based on their network proximityto the 

data sources, then the JobTracker send the task 

requests to those selected TaskTrackers. 

Each TaskTracker will start the map phase 

processing by extracting the input data from the 

splits. For each record parsed by the “Input Format”, 

it invoke the user provided “map” function, which 

emits a number of key/value pair in the memory 

buffer. A periodic wakeup process will sort the 

memory buffer into different reducer node by 

invoke the “combine” function. The key/value pairs 

are sorted into one of the R local files (suppose there 

are R reducer nodes). When the map task completes 

(all splits are done), the Task Tracker will notify the 

Job Tracker. When all the Task Trackers are done, 

the JobTracker will notify the selected Task 

Trackers for the reduce phase.  

Each TaskTracker will read the region files 

remotely. It sorts the key/value pairs and for each 

key, it invokes the “reduce” function, which collects 

the key/aggregatedValue into the output file (one 

per reducer node).  

Map/Reduce framework is resilient to crash of any 

components. The JobTracker keep tracks of the 

progress of each phases and periodically ping the 

TaskTracker for their health status. When any of the 

map phase TaskTracker crashes, the JobTracker will 

reassign the map task to a different TaskTracker 

node, which will rerun all the assigned splits. If the 

reduce phase TaskTracker crashes, the JobTracker 

will rerun the reduce at a different TaskTracker.  

After both phases completes, the JobTracker will 

unblock the client program.  

 

4.Proposed Model 

In the proposed system we does not aim for maximum 

compression, or compatibility with any other 

compression library; instead, it aims for very high 

speeds and reasonable compression. For instance, 

compared to the fastest mode of zlib, Snappy is an order 

of magnitude faster for most inputs, but the resulting 

compressed files are anywhere from 20% to 100% 

bigger. On a single core of a Core i7 processor in 64-bit 

mode, Snappy compresses at about 250 MB/sec or more 

and decompresses at about 500 MB/sec or more. 

5.Screenshots 
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