
International Journal of Emerging Technology and Innovative Engineering
Volume I, Issue 5, May 2015 (ISSN: 2394 – 6598)

124

COPYRIGHT TO IJETIE

SNAPPY COMPRESSION DECOMPRESSION USING MAPREDUCE

TECHNIQUE

1st Author

Hema Jadhav

KMIT, MTech CSE

hemasjadhav@gmail.com

ABSTRACT

Snappy is a compression/decompression library. It does not

aim for maximum compression, or compatablity with any

other compression library instead it aims for very high speeds

and reasonable compression. For instance, compared to fastest

mode of zlib, Snappy is an order of magnitude faster for most

inputs, but the resulting compressed files are anywhere from

20% to 100% bigger. On a single core of a Corei7 processor

in 64bit mode,Snappy compress at about 250 MB/secor more

and decompress at about 500 MB/sec or more.

Snappy is widely used inside Google, in everything from

BigTable and MapReduce to our internal RPC systems.

1. INTRODUCTION
Snappy is a compression/decompression library. It does

not aim for maximum compression, or compatablity

with any other compression library instead it aims for

very high speeds and reasonable compression. For

instance, compared to fastest mode of zlib, Snappy is an

order of magnitude faster for most inputs, but the

resulting compressed files are anywhere from 20% to

100% bigger. On a single core of a Corei7 processor in

64bit mode,Snappy compress at about 250 MB/secor

more and decompress at about 500 MB/sec or more.

For the computer industry, effective and prompt

analysis of gathered data means better

understanding of consumer needs and more

business. As the requirement of high storage

capacity and data intensive computing grows, the

scale of storage clusters increases. The key aspect of

making such storage clusters cost effective and

efficient is utilizing an appropriate software

framework and platform for large scale computing.

2. Introduction to Hadoop
Hadoop was chosen for this thes is for several

reasons. First, it is popular and widely used by a

number of leading organizations including,

Amazon, Facebook, Google, Yahoo! and many

others. Second, it is designed for commodity

hardware, significantly lowering the cost of building

the cluster. Third, Hadoop is an open source

technology developed in Java, making it easier to

obtain, distribute and modify whenever necessary.

Its effective use, lower cost and easy access makes

it a potentially stable base as a large scale storage

system for future technologies. Thus, research into

the architecture of Hadoop file system should help

data intensive applications with their rapidly

growing storage needs.

3. Introduction to HDFS
Implementation of Hadoop is carried out in two main

service components of the master / slave architecture.

The file system metadata is decoupled from its actual

data located on an individual NameNode machine.

Decoupling provides flexibility to the architecture to

accommodate more DataNodes in the cluster. Hadoop

was chosen for this thesis for several reasons. First, it is

popular and widely used by a number of leading

organizations including, Amazon, Facebook, Google,

Yahoo! and many others. Second, it isdesigned for

commodity hardware, significantly lowering the cost

of building the cluster. Third, Hadoop is an open source

technology developed in Java, making it easier to

obtain, distribute and modify whenever necessary. Its

effective use, lower cost and easy access makes it a

potentially stable base as a large scale storage system

for future technologies. Thus, research into the

architecture of Hadoop file system should help data

intensive applications with their rapidly growing

storage needs.

3.1 Data Node
Hadoop Distributed File System (HDFS) serves as the

large scale data storage system.

Similar to other common file systems, the HDFS

supports hierarchical file organization. The Name

Node splits large files into fixed sized data blocks

which are scattered across the cluster. Typically the

data block size for the HDFS is configured as

128MB. Since HDFS is built on commodity

IJETIE Vol. 1, Issue 5, May 2015

125

COPYRIGHT TO IJETIE

hardware, the machine failure rate is high. In order

to make the system fault tolerant, data blocks are

replicated across multiple Data Nodes. HDFS

provides replication, fault detection and automatic

data block recovery to maintain seamless storage

access. By default replication takes place on three

nodes across the cluster. When a client tries to

access the failed Data Node, the Name Node maps

the block replica and returns it to the client. For

achieving the high throughput, the file system nodes

are connected by high bandwidth network.

.

3.2 Name Node
The NameNode maintains the file system metadata

as the HDFS directory tree and operates as a

centralized service in the cluster. It controls the

mapping between file name, data block locations

and the DataNodes on which data blocks are stored.

It also writes the transaction logs to record

modifications in the file system. Clients

communicate with the NameNode for common file

system operations such as open, close, rename and

delete. The namespace is a live record of the HDFS

located on the centralized NameNode server. It is a

directory treestructure of the file system which

documents various aspects of the HDFS such as

block locations, replication factor, load balancing,

client access rights and file information. The

namespace serves as a mapping for data location

and helps HDFS clients to perform file system

operations.

The metadata is stored as a file system image

(fsimage) file which is a persistent checkpoint of the

file system. The edit log records the write operations

submitted by the file system clients. When the edit

log size exceeds a predefined threshold, the

NameNode moves the transactions into live memory

and apply each operation to the fsimage.

A backup of the namespace is periodically stored on

the local disk of the NameNode and synchronized

with a secondary master node as a provision against

NameNode failure.

3.3 Job Tracker
The Job Tracker is the service within Hadoop that farms

out Map Reducetasks to specific nodes in the cluster,

ideally the nodes that have the data, or at least are in the

same rack.

1. Client applications submit jobs to

the Job tracker.

2. The Job Tracker talks to the

Name Nodeto determine the

location of the data. The Job

Tracker submits the work to the

chosen TaskTracke rnodes.

3. The TaskTracke rnodes are monitored. If they

do not submit heartbeat signals often enough,

they are deemed to have failed and the work

is scheduled on a different Task Tracker.

4. A Task Trackerwill notify the Job Tracker

when a task fails. The Job Tracker decides

what to do then: it may resubmit the job

elsewhere, it may mark that specific record as

something to avoid, and it may even blacklist

the Task Trackeras unreliable.

5. When the work is completed, the Job Tracker

updates its status.

Client applications can poll the Job Tracker for

information.

The Job Tracker is a point of failure for the Hadoop

Map Reduceservice. If it goes down, all running jobs

are halted.

3.4 Task Tracker

A TaskTracker is a node in the cluster that accepts tasks

- Map, Reduce and Shuffle operations - from

aJobTracker.

Every Task Tracker is configured with a set of slots;

these indicate the number of tasks that it can accept.

When the JobT rackertries to find somewhere to

schedule a task within the Map Reduceoperations, it

http://wiki.apache.org/hadoop/MapReduce
http://wiki.apache.org/hadoop/MapReduce
http://wiki.apache.org/hadoop/NameNode
http://wiki.apache.org/hadoop/NameNode
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/TaskTracker
http://wiki.apache.org/hadoop/MapReduce
http://wiki.apache.org/hadoop/MapReduce
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/MapReduce
http://wiki.apache.org/hadoop/MapReduce

IJETIE Vol. 1, Issue 5, May 2015

126

COPYRIGHT TO IJETIE

first looks for an empty slot on the same server that

hosts the Data Nodecontaining the data, and if not, it

looks for an empty slot on a machine in the same

rack. The TaskTracker spawns a separate JVM

processes to do the actual work; this is to ensure that

process failure does not take down the task tracker.

The TaskTracker monitors these spawned processes,

capturing the output and exit codes. When the

process finishes, successfully or not, the tracker

notifies theJobTracker. TheTaskTrackersalso send

out heartbeat messages to the JobTracker, usually

every few minutes, to reassure the Job Trackerthat it

is still alive. These messages also inform the Job

Tracker. The JobTracker will first determine the

number of splits (each split is configurable,

~1664MB) from the input path, and select some

TaskTracker based on their network proximityto the

data sources, then the JobTracker send the task

requests to those selected TaskTrackers.

Each TaskTracker will start the map phase

processing by extracting the input data from the

splits. For each record parsed by the “Input Format”,

it invoke the user provided “map” function, which

emits a number of key/value pair in the memory

buffer. A periodic wakeup process will sort the

memory buffer into different reducer node by

invoke the “combine” function. The key/value pairs

are sorted into one of the R local files (suppose there

are R reducer nodes). When the map task completes

(all splits are done), the Task Tracker will notify the

Job Tracker. When all the Task Trackers are done,

the JobTracker will notify the selected Task

Trackers for the reduce phase.

Each TaskTracker will read the region files

remotely. It sorts the key/value pairs and for each

key, it invokes the “reduce” function, which collects

the key/aggregatedValue into the output file (one

per reducer node).

Map/Reduce framework is resilient to crash of any

components. The JobTracker keep tracks of the

progress of each phases and periodically ping the

TaskTracker for their health status. When any of the

map phase TaskTracker crashes, the JobTracker will

reassign the map task to a different TaskTracker

node, which will rerun all the assigned splits. If the

reduce phase TaskTracker crashes, the JobTracker

will rerun the reduce at a different TaskTracker.

After both phases completes, the JobTracker will

unblock the client program.

4.Proposed Model

In the proposed system we does not aim for maximum

compression, or compatibility with any other

compression library; instead, it aims for very high

speeds and reasonable compression. For instance,

compared to the fastest mode of zlib, Snappy is an order

of magnitude faster for most inputs, but the resulting

compressed files are anywhere from 20% to 100%

bigger. On a single core of a Core i7 processor in 64-bit

mode, Snappy compresses at about 250 MB/sec or more

and decompresses at about 500 MB/sec or more.

5.Screenshots

http://wiki.apache.org/hadoop/DataNode
http://wiki.apache.org/hadoop/DataNode
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/TaskTrackers
http://wiki.apache.org/hadoop/TaskTrackers
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/JobTracker
http://wiki.apache.org/hadoop/JobTracker

IJETIE Vol. 1, Issue 5, May 2015

127

COPYRIGHT TO IJETIE

6. REFERENCES
[1] Bowman, M., Debray, S. K., and Peterson, L. L.

1993. Reasoning about naming systems. .

[2] Ding, W. and Marchionini, G. 1997 A Study on

Video Browsing Strategies. Technical Report.

University of Maryland at College Park.

[3] Fröhlich, B. and Plate, J. 2000. The cubic mouse: a

new device for three-dimensional input. In

Proceedings of the SIGCHI Conference on Human

Factors in Computing Systems

[4] Tavel, P. 2007 Modeling and Simulation Design.

AK Peters Ltd.Sannella, M. J. 1994 CSatisfaction

and Debugging for Interactive User Interfaces.

Doctoral Thesis. UMI Order Number: UMI Order

No. GAX95-09398., University of Washington.

[5] Forman, G. 2003. An extensive empirical study of

feature selection metrics for text classification. J.

Mach. Learn. Res. 3 (Mar. 2003), 1289-1305.

[6] Brown, L. D., Hua, H., and Gao, C. 2003. A widget

framework for augmented interaction in SCAPE.

[7] Y.T. Yu, M.F. Lau, "A comparison of MC/DC,

MUMCUT and several other coverage criteria for

logical decisions", Journal of Systems and

Software, 2005, in press.

[8] Spector, A. Z. 1989. Achieving application

requirements. In Distributed Systems, S. Mullender

